Part Number Hot Search : 
MMBZ52 F21M15AU SRA22 TC8800 MC668L IRF533FI MRF1550 AC240
Product Description
Full Text Search
 

To Download APT10M07JVFR Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 APT10M07JVFR
100V 225A 0.007
POWER MOS V (R)
FREDFET
G
S D
S
Power MOS V(R) is a new generation of high voltage N-Channel enhancement mode power MOSFETs. This new technology minimizes the JFET effect, increases packing density and reduces the on-resistance. Power MOS V(R) also achieves faster switching speeds through optimized gate layout.
SO
2 T-
27
"UL Recognized"
ISOTOP (R)
* Fast Recovery Body Diode * Lower Leakage * Faster Switching
MAXIMUM RATINGS
Symbol VDSS ID IDM VGS VGSM PD TJ,TSTG TL IAR EAR EAS Parameter Drain-Source Voltage
* 100% Avalanche Tested * Popular SOT-227 Package
G
D
S
All Ratings: TC = 25C unless otherwise specified.
APT10M07JVFR UNIT Volts Amps
100 225 900 30 40 700 5.6 -55 to 150 300 225 50
4 1
Continuous Drain Current @ TC = 25C Pulsed Drain Current Gate-Source Voltage Continuous Gate-Source Voltage Transient Total Power Dissipation @ TC = 25C Linear Derating Factor Operating and Storage Junction Temperature Range Lead Temperature: 0.063" from Case for 10 Sec. Avalanche Current
1
Volts Watts W/C C Amps mJ
(Repetitive and Non-Repetitive)
1
Repetitive Avalanche Energy
Single Pulse Avalanche Energy
3600
STATIC ELECTRICAL CHARACTERISTICS
Symbol BVDSS ID(on) RDS(on) IDSS IGSS VGS(th) Characteristic / Test Conditions Drain-Source Breakdown Voltage (VGS = 0V, ID = 250A) On State Drain Current
2
MIN
TYP
MAX
UNIT Volts Amps
100 225 0.007 250 1000 100 2 4
(VDS > I D(on) x R DS(on) Max, VGS = 10V)
2
Drain-Source On-State Resistance
(VGS = 10V, 0.5 ID[Cont.])
Ohms A
9-2004 050-5846 Rev A
Zero Gate Voltage Drain Current (VDS = VDSS, VGS = 0V) Zero Gate Voltage Drain Current (VDS = 0.8 VDSS, VGS = 0V, TC = 125C) Gate-Source Leakage Current (VGS = 30V, VDS = 0V) Gate Threshold Voltage (VDS = VGS, ID = 5.0mA)
APT Website - http://www.advancedpower.com
nA Volts
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
DYNAMIC CHARACTERISTICS
Symbol Ciss Coss Crss Qg Qgs Qgd t d(on) tr t d(off) tf Characteristic Input Capacitance Output Capacitance Reverse Transfer Capacitance Total Gate Charge
3
APT10M07JVFR
Test Conditions VGS = 0V VDS = 25V f = 1 MHz VGS = 10V VDD = 0.5 VDSS ID = ID [Cont.] @ 25C VGS = 15V VDD = 0.5 VDSS ID = ID [Cont.] @ 25C RG = 0.6 MIN TYP MAX UNIT pF
18000 6800 2800 700 130 300 25 60 80 20
21600 9500 4200 1050 195 435 50 120 120 40
ns nC
Gate-Source Charge Gate-Drain ("Miller") Charge Turn-on Delay Time Rise Time Turn-off Delay Time Fall Time
SOURCE-DRAIN DIODE RATINGS AND CHARACTERISTICS
Symbol IS ISM VSD
dv/ dt
Characteristic / Test Conditions Continuous Source Current (Body Diode) Pulsed Source Current Diode Forward Voltage Peak Diode Recovery
1 2 dt
MIN
TYP
MAX
UNIT Amps Volts V/ns ns C Amps
225 900 1.3 8
Tj = 25C Tj = 125C Tj = 25C Tj = 125C Tj = 25C Tj = 125C
(Body Diode) (VGS = 0V, IS = -ID [Cont.])
5
dv/
t rr Q rr IRRM
Reverse Recovery Time (IS = -ID [Cont.], di/dt = 100A/s) Reverse Recovery Charge (IS = -ID [Cont.], di/dt = 100A/s) Peak Recovery Current (IS = -ID [Cont.], di/dt = 100A/s)
150 250 0.9 2.5 12 20
250 500
THERMAL / PACKAGE CHARACTERISTICS
Symbol RJC RJA VIsolation Torque Characteristic Junction to Case Junction to Ambient RMS Voltage (50-60 Hz Sinusoidal Waveform From Terminals to Mounting Base for 1 Min.) Maximum Torque for Device Mounting Screws and Electrical Terminations.
3 See MIL-STD-750 Method 3471 4 Starting T = +25C, L = 142H, R
j
MIN
TYP
MAX
UNIT C/W Volts
0.18 40 2500 13
G
lb*in
1 Repetitive Rating: Pulse width limited by maximum junction
temperature. 2 Pulse Test: Pulse width < 380 S, Duty Cycle < 2%
= 25, Peak IL = 225A
APT Reserves the right to change, without notice, the specifications and information contained herein. 0.2
, THERMAL IMPEDANCE (C/W)
0.1 0.05
D=0.5 0.2 0.1
0.01 0.005
0.05 0.02 0.01 SINGLE PULSE Note:
PDM t1 t2 Duty Factor D = t1/t2 Peak TJ = PDM x ZJC + TC
050-5846 Rev A
9-2004
Z
JC
0.001 0.0005 10-5 10-4
10-3 10-2 10-1 1.0 10 RECTANGULAR PULSE DURATION (SECONDS) FIGURE 1, MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs PULSE DURATION
APT10M07JVFR
360
ID, DRAIN CURRENT (AMPERES)
VGS=7V, 8V, 9V, 10V & 15V
ID, DRAIN CURRENT (AMPERES)
360 6.5V 300 240 180 120 60 0
VGS=15V 10V 9V
8V 7V 6.5V 6V
300 240
6V 180 120 60 0 5.5V
5.5V 5V 4.5V
5V 4.5V
0 10 20 30 40 50 VDS, DRAIN-TO-SOURCE VOLTAGE (VOLTS) FIGURE 2, TYPICAL OUTPUT CHARACTERISTICS 360
ID, DRAIN CURRENT (AMPERES) RDS(ON), DRAIN-TO-SOURCE ON RESISTANCE
0 0.5 1.0 1.5 2.0 2.5 VDS, DRAIN-TO-SOURCE VOLTAGE (VOLTS) FIGURE 3, TYPICAL OUTPUT CHARACTERISTICS 1.10
V
GS
TJ = -55C TJ = +25C TJ = +125C
VDS> ID (ON) x RDS (ON)MAX. 250SEC. PULSE TEST @ <0.5 % DUTY CYCLE
NORMALIZED TO = 10V @ 0.5 I [Cont.]
D
300 240 180 120 60 0
1.05 1.00 0.95 0.90 0.85 0.80
VGS=10V
TJ = +125C TJ = +25C TJ = -55C
VGS=20V 0 100 200 300 400 ID, DRAIN CURRENT (AMPERES) FIGURE 5, RDS(ON) vs DRAIN CURRENT
0 2 4 6 8 VGS, GATE-TO-SOURCE VOLTAGE (VOLTS) FIGURE 4, TYPICAL TRANSFER CHARACTERISTICS 250
ID, DRAIN CURRENT (AMPERES)
200
BVDSS, DRAIN-TO-SOURCE BREAKDOWN VOLTAGE (NORMALIZED)
1.15
1.10
150
1.05
100
1.00
50
0.95
50 75 100 125 150 TC, CASE TEMPERATURE (C) FIGURE 6, MAXIMUM DRAIN CURRENT vs CASE TEMPERATURE
RDS(ON), DRAIN-TO-SOURCE ON RESISTANCE (NORMALIZED)
0
25
-25 0 25 50 75 100 125 150 TJ, JUNCTION TEMPERATURE (C) FIGURE 7, BREAKDOWN VOLTAGE vs TEMPERATURE 1.2
VGS(TH), THRESHOLD VOLTAGE (NORMALIZED)
0.90
-50
2.00 1.75 1.50 1.25 1.00 0.75 0.50 -50
I = 0.5 I [Cont.]
D D
V
GS
= 10V
1.1 1.0 0.9 0.8 0.7 0.6
-25 0 25 50 75 100 125 150 TJ, JUNCTION TEMPERATURE (C) FIGURE 8, ON-RESISTANCE vs. TEMPERATURE
-25 0 25 50 75 100 125 150 TC, CASE TEMPERATURE (C) FIGURE 9, THRESHOLD VOLTAGE vs TEMPERATURE
-50
050-5846 Rev A
9-2004
APT10M07JVFR
1,000
ID, DRAIN CURRENT (AMPERES)
500
OPERATION HERE LIMITED BY RDS (ON)
10S 100S
50,000 Ciss
C, CAPACITANCE (pF)
100 50
1mS
Coss 10,000 Crss 5,000
10mS 10 5 TC =+25C TJ =+150C SINGLE PULSE 100mS DC
1 5 10 50 100 VDS, DRAIN-TO-SOURCE VOLTAGE (VOLTS) FIGURE 10, MAXIMUM SAFE OPERATING AREA
VGS, GATE-TO-SOURCE VOLTAGE (VOLTS)
1
.01 .1 1 10 50 VDS, DRAIN-TO-SOURCE VOLTAGE (VOLTS) FIGURE 11, TYPICAL CAPACITANCE vs DRAIN-TO-SOURCE VOLTAGE
IDR, REVERSE DRAIN CURRENT (AMPERES)
1,000
20
I = 100A
D
500
16
VDS=20V VDS=50V
100 50
TJ =+150C
TJ =+25C
12
VDS=80V
8
10 5
4
200 400 600 800 1000 1200 1400 Qg, TOTAL GATE CHARGE (nC) FIGURE 12, GATE CHARGES vs GATE-TO-SOURCE VOLTAGE
0
0
0 0.4 0.8 1.2 1.6 2.0 VSD, SOURCE-TO-DRAIN VOLTAGE (VOLTS) FIGURE 13, TYPICAL SOURCE-DRAIN DIODE FORWARD VOLTAGE
1
SOT-227 (ISOTOP(R)) Package Outline
31.5 (1.240) 31.7 (1.248) 7.8 (.307) 8.2 (.322) W=4.1 (.161) W=4.3 (.169) H=4.8 (.187) H=4.9 (.193) (4 places) 11.8 (.463) 12.2 (.480) 8.9 (.350) 9.6 (.378) Hex Nut M4 (4 places)
r = 4.0 (.157) (2 places)
4.0 (.157) 4.2 (.165) (2 places)
25.2 (0.992) 0.75 (.030) 12.6 (.496) 25.4 (1.000) 0.85 (.033) 12.8 (.504)
3.3 (.129) 3.6 (.143) 14.9 (.587) 15.1 (.594) 30.1 (1.185) 30.3 (1.193)
9-2004
1.95 (.077) 2.14 (.084)
* Source
Drain
* Source terminals are shorted internally. Current handling capability is equal for either Source terminal.
38.0 (1.496) 38.2 (1.504)
* Source Dimensions in Millimeters and (Inches)
ISOTOP(R) is a Registered Trademark of SGS Thomson. APT's products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522
Gate
050-5846 Rev A
"UL Recognized" File No. E145592
5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved.


▲Up To Search▲   

 
Price & Availability of APT10M07JVFR

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X